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A thrge-dimensional simulation of turbulent (high Reynolds num-
bers) flow over a sphere was performed. We have applied vortex
schemes by decompaosing the physical region into two. The first is
a thin layer near the sphere, where we have used a spherical coordi-
nate systemn. The second is the rest of the physical domain, where
we have applied the grid-free vortex method with a deterministic
approximation to the viscous term. The results indicate constant
growth in time of the L, norm of the vorticity and concentration of the

vorticity field in small portions of the region.  © 1994 Academic Press, Inc.

1. INTRODUCTION

In this work we are interested in three-dimensional turbulent
flow—a subject that attracted many mathematicians and engi-
neers for several decades. The physical richness of turbulence
and its yet unfounded full theory have been the reasons. To
better understand the physics of transition to turbulence and
turbulence itself, efforts have been made in several directions,
such as theoretical work, physical experiments, and numerical
simulations. Landauw and Lifshitz [33], as well as Lin {34] and
Drazin and Reid (25}, observed that sinall perturbations on a
steady-state solution of the Navier-Stokes equations may be
unstable for high Reynolds numbers. In [33] Landau and
Litshiiz characterize a fuily developed turbulent flow as a super-
position of turbulent eddies of different sizes, As the Reynoids
number increases, eddies of every size are present. A statistical
theory of homogeneous turbulence based on the correlation
function was developed in [7, 20]. In [43, 217 it was observed
that in regions where the vorticity is large in magnitude, it
tends to align with a family of eigenvectors of the deformation
matrix. It was also shown in [9, 37] that an initially smooth
solution of Euler equations becomes singular at a finite time
T# if and only if the vorticity accumulates rapidly so that
f;lg!:(s) ds tends to infinity as r — T*, where |£|.(s) is the
infinity norm at time s. Avellaneda and Majda [3, 4], as well
as Yakhot and (rszag [491, have recognized the need far renor-
malization for turbulent flow and developed a theory for a
mode! linearized problem (advection—diffusion) in the steady,
as well as the time dependent, case. In the voriex contexi—
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theory has dealt among other things with Hausdorff dimensions
of the support of vorticity, vortex stretching, and hairpin forma-
tion. It was conjectured in [39, 40] that the Hausdorff dimension
of the vorticity support for the ciass of turbulent flow is approxi-
mately 2.5-—this is compatible with numerical results (see [17])
for the stretching of an initially perturbed vortex tube. Stretch-
ing of vortex lines [17, 18] and hairpin formation [19] were
observed as well; it was shown in [18] that if vortex stretching
occuis, in order to prevent the kinetic energy from increasing in
time, vortex lines should fold and thus form haicpins of vorticity.

Measurements from experiments are available for flow in
several geometries. Head and Bandyapodhyay [26] have per-
formed experiments for the flow over a flat plate, indicating
the formation of small hairpins of vorticity near the boundary.
For the flow over a circular cylinder physical results are avail-
able from the experiments of Coutanceau and Bouard {23, 14].
A limited number of experiments were performed for a flow
over a sphere and for other geometries. The drag coefficient
for vartous Reynolds numbers was measured for a flow over
a sphere and for a bowling ball enlering water af various speeds
(see 148; 6, Chaps. 3, 6).

The need for numerical simulations emerges from the fact
that physical experiments are limited by their nature to specific
geometries, initial and far-field conditions. Numerical results
provide additional insight of the phenomena and a qualitative
picture of the flow, which in turn may become a basis for further
development in turbulence theory. In {16, 27] simulations for
a flow over a flat plate in three-dimensional space were de-
signed, and they indicate growth of boundary layer thickness,
amplification of boundary layer disturbances. and formation of
small vorticity hairpins. For the flow over a cylinder {44, 15]
recirculation zones, main and secondary vortices were observed
in the numerical simulations and they indicate similar visualiza-
tions of the flow derived from physical measurements. Numeri-
cal simulations include also tracking internal flows, such as the
flow initiated by a single vortex located at the center of a two-
dimensional box [3].

In this work we performed numerical experiments for sltightly
viscous flow over bodies with more complex geometry, such
as a sphere, The problem for a flow over a sphere is interesting
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by its own right, since a sphere is a common geomelry in nature
as well as in artificial products. Moreover, it is a model for
other three-dimensional problems of flow in complicated geom-
etry, as one can either transform the computationa!l domain to
the exterior of a sphere, or use techniques similar to the ones
utifized here. The problem for the flow over a sphere at high
Reynoids numbers has—to my knowledge—no published nu-
merical results,

The numierical methods that we used are vortex schemes;
these methods are efficient for high Reynolds number flow,
since they concentrate most of the computational elements in
the region where the most interesting phenomena occur. Thus,
for the flow over solid bodies, small scale phenomena are
captured by the presence of many computational elements near
the body, while away from the body, where large scale phenom-
ena dominate, fewer computational elements reside. Moreover,
there is no severe condition on the time step for vortex schemes
(see [16, 1, 29]), since the methods are based on Lagrangian
tracking of the vorticity field. Our numerical approximation
consists of two parts; the first is the region away from the sphere,
where we have approximated the Navier—Stokes equations; the
second is the region near the sphere, where we have approxi-
mated the boundary layer equations. For the first, we have
applied a vortex scheme that goes along the lines of the scheme
suggested in [16], where for the stretching term of the Navier—
Stokes equations we applied a vortex blob version, suggested
in[1]. The viscous term is discretized via a deterministic scheme
suggested in |28).

For the second region, we have derived the boundary layer
equations for the velocity and the vorticity fields. We then
covered the sphere by tiles which are formed by a spherical
coordinate system, created vorticity on the sphere to satisfy the
no-slip boundary condition, and let these particles evolve with
time via a spherical representation of the boundary layer equa-~
tions; viscosity is approximated via random walks. The innova-
tion in this paper is the derivation of the boundary layer equa-
tions, and the construction of a spherical coordinate system
that fits the sphere excellently and enables us to partition the
sphere in a convenient way.

We were able to obtain a gualitative and guantitative picture
of at least the intermediate and large scales of the solution, The
resolution of very small scales of a three-dimensional flow may
require refinement of the numerical parameters and technigue,
and therefore more powerful computers. The numerical solution
indicates constant growth of vorticity in discrete L, and L,
norms and construction of intense vorticity on sets of smaller
support.

The paper is organized as follows, In Section 2 we represent
the problem as a set of differential equations including boundary
and initial conditions. We also refer to physical phenomena as
well as the mathematical approach related to the class of prob-
lems which contain the transition to turbulence and turbulence
itself. Section 3 is devoted to the derivation of the boundary
layer equations in the vicinity of the sphere. In Sections 4 and
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5 we describe the numerical scheme in the boundary layer and
the interior, respectively. Implementation of boundary condi-
tions is further expanded in Section 6. In Section 7 we discuss
convergence properties of the scheme and in Section 8 we
represent the numerical results.

2. THE PHYSICAL PROBLEM

We are interested in soiutions of the incompressible Navier—
Stokes equations for fow viscosity, or alternatively, for high
Reynolds numbers. [t is well known that the transition to turbu-
lence and turbulence may appear for this class of flow. We
focus on three-dimensional flow over complicated geometries
and, as an example, we have taken a flow over a sphere—a
problem which is interesting by uself, and—to my knowl-
edge—has no published numerical results yet. Problems with
other geometries can be similarly treated by body-fitted coordi-
nates in their vicinity.

We shall use the voriicity formulation for Navier—Stokes
equations in Cartesian coordinates; the latier are obtained by
taking the curl of the corresponding velocity-pressure formu-
lation,

¢

Lk V)= (& T+ RV, 2.12)

divu = 0, (2.1b)
£ and u are the vorticity and the velocity vectors, respectively,
and V*£is the Laplacian operator in cartesian coordinates. The
physical domain is the exterior of a sphere of radius a, with
the following far-field boundary condition

u— U= ({00 aslkl - oo, (2.2)
where (U, 0, 0) is the cartesian representation of U,

The conditions on the sphere consist of the following no-
leak and no-slip conditions. Let n and 1 be unit normal and
tangential vectors to the surface of the sphere. The no-leak

boundary condition
{2.3a)

assures that the flow does not enter the solid sphere. The no-
slip boundary condition

(2.3b)

means that the tangential components of the velocity vector for
the fluid is identical to those for the body and they are both
zero, since the body is in rest. Conditions (2.3a)~(2.3b) together
form the foliowing boundary conditions:
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u=0 forlx] =a (2.4
Initially, u = U = (I, 0, 0) at r = 0.

Turbulent flow, as described in [33], is characterized by the
presence of extremely irregular variation in the velocity field
with fime at each point, and a similar variation of the velocity
between different points in space at a given instant. The velocity
continuously fluctuates about some mean value, and the ampli-
tude of variation is in general not small, compared with the
magnitude of the velocity itself. If one perturbs a steady-state
solutton by an initially small perturbation, then to first order
the perturbation must satisfy a set of linear partial differential
gquations, whose solution may grow in time for a high enough
Reynolds number., A similar analysis for various geometries
and far-field conditions was carried out by Lin [34] and Drazin
and Reid [25]. Landau and Lifshitz also chavacterize fuily devel-
oped turbulence, where the flow may be regarded as a superpo-
sition of turbulent eddies of different sizes, an eddy size being
the order of magnitude of distances over which the velocity
varies appreciably. For non-viscous turbulent flow all sizes of
eddies appear, and the energy associated with each scale of
eddy passes to smaller scales without disstpation. For a viscous
flow, the energy associated with smail enough eddies—of order
I/ R¥* or less—is transformed into heat; here / and R are typical
length and the Reynolds number respectively.

For homogeneous flow the energy E(k) associared with the
modes of magnitude & is the integral over ali the appropriate
Fourier modes of the correlation function [7, 20]. The Kolmo-
gorov hypothesis asserts that [33, 17] as R tends to infinity the
energy spectrum behaves as

E(k) = C*&¥k™"  for Ly < |k] < L;' (the inertial range),

where £ is the rate of energy dissipation, L, is of order
Lo/ R, C is a universal constant, and L, is the typical length-
scale of the large eddies.

In the vorticity context, looking at the rate of energy disstpa-
tion, we find that for incompressible flow, & = (didr) [ o ol
dx = ~R™' [ . |¢] dx. Since the rate of energy dissipation is
observed experimentally {17, 18) to be large at high Reynolds
numbers too, the enstrophy [ |£]* dx must become extremely
large at high Reynolds numbers; this illustrates the important
role that vorticity plays for this class of problems. Another
interesting aspect of the solution is its smoothness; a relation
between non-simoothness of 3D solutions of incompressible
Euler equations and the growth of vorticity norms was made
in [91. It was proven that if u(x, 0) is a smooth incompressible
velocity field with finite energy, which belongs to the Sobolev
space W(R%) = H'(R®) for 5 = 3, then the solution becomes
singular at a finite time 7% if and only if [ |£. ds tends to
infinity as f tends to T*,

Since the vorticity grows in magnitude as time evolves [17],
vorticity folding must occur [18] to prevent the kinetic energy
from growing in time; this process is responsible for the forma-
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tion of small hairpins of vorticity. Computational evidence {2,
47] supports the alignment of intense vorticity with the largest
eigenvalue of the deformation matrix at short times; at larger
times, intense vorticity tends to align with the middle eigen-
value, which was found to be positive in these regions. The
numerical results were supported by a survey of a simple model
[38], for which the velocity field and the pressure have a particu-
lar form and the vorticity and the deformation matrix depend
solely on time. 1t was proved 138] that there exists T, so that
for 1 > T, the vorticity, whose magnitude was assumed 1o grow
constantly in time, aligns with the middle eigenvalue of the
deformation matrix.

3. THE BOUNDARY LAYER EQUATIONS

The most delicate question that arises when one applies
a numerical scheme to regions with complex geometries is
how to approach the boundaries. For the flow over a sphere
it seems most natural o fit this surface with a spherical
coordinate system. In the context of vortex schemes for flow
over solid bodies, an important question is how one should
apply the no-leak and the no-slip boundary conditions. One
of the common appraaches [16, 15, 271 is to model the flow
by the Navier-Stokes equations away from the body, and
by the Prandtl equations near the surface of the body: the
resulting scheme was found to be numerically appropriate
to describe the flow. To obtain a boundary layer approximation
in the vicinity of the sphere we shall first represent the
Navier-Stokes (equations of motion), the velocity—vorticity
relations, and the incompressibility equation in spherical
coordinates. By assuming that there exists a boundary layer
for which changes in the solution are most profound in the
direction normal to the surface, we then derive the boundary
layer equations.

Let us first express the Navier—Stokes equations in spherical
coordinates. The velocity—pressure formulation for the Navier—
Stokes equations in cartesian coordinates is

(Z—l: +{u-Viu=~Vp+ R 'V,

where u is the cartesian reresentation of the velocity vector
and p is the pressure. Love [36] was the first to express
the strain tensor in a general curvilinear coordinate system.
He expressed each cartesian derivative in terms of curvilinear
ones and applied the result to the curvilinear representation
of the velocity vector. This involves the derivation of deriva-
tives of curvilinear unit vectors with respect to curvilinear
derivatives. The resulting equations take the following form
(which can be found also in Pai [42] and O’Neill and
Chorlton [41]). Let u = (u,, iy, uy) be the velocity vector
in spherical coordinates and let d/dt be the material derivative;
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thus, the Navier—-Stokes equations can be written in spherical
coordinates as

%: *—%}erR" [Vzu,
—%(u,+%%ﬁ+(cot G)MB-!—;i:]—B(;—L;f)] (3.1a)
% = — %%+ R [szug
*;13(2%*55%*%%)] (3.1b)
f{it? - rsiln 0% + R I:Vzud’
# (ﬁ? fIL; 25(:[?566?% - ﬁ::]ﬁa):l (3.1¢)

The total derivatives may be written

du,  Du, uwi+uj

d . Dt ro

duy  Dug  uty— (cot Bl

dr Dt r ’

duy Duy uu,+ (cot ugu,

dt Dt r ’

where

D a d Ug Hy @
ot —— —
De ot ar  radf rsinfdo

The incompressibility condition takes the form in spheri-
cal coordinates,

5
= (ugsin 6)

. 1 a
=——(rlu) +
divu rar (ru,) rsin 836

1d
e 3.10)

+ _— =
rsin 8 deg

We assume that there exists a boundary layer of thickness
&, in which the solution changes more rapidly in the radial
direction, compared to changes in the tangential directions. We
assume that u, and u, are of order one; therefore, from the
incompressibility condition, u, is of order & in the boundary
layer, noting that r = O(1). For the viscous terms to be compara-
ble in order of magnitude to other terms, such as the time
derivate of tangential components of the velocity, we have to
require that & = 0(1!\/1_?). Thus, neglecting terms of order 8
or less, we have
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@ -l -1 a_ztff (3.22)
dt rog ar?’ ’
dud, 1 ap Bzud,
e Y 3.2b
dt rsin 8 d¢ ar? ( )
- gﬂr (3.20)
divu =0, 3.2d)

Note that in the neighborhood of the poles 6 = 0, 7 the spherical
coordinate system is singular, thus Eqgs. (3.1a)-(3.1d) are not
valid in their usual sense, nor is the Prandtl approximation.
Therefore, we shall use a local Cartesian coordinate system near
the poles, and the surface of the sphere will be approximated by
a small horizontal flat plate; the corresponding boundary layer
approximation is well known and is described in detail in Sec-
tion 4.

To proceed in deriving the boundary layer equations for the
vorticity, we first write the vorticity vector in terms of the
velocity field via a spherical representation:

| d . d
&= Zein 9(£(ru¢sm & ad (ms)),

1 d d .
E= ein G(E—b u, — a(r tgSin 8)),

YL
"t‘b_r(ar(m'?) aeu,).

Neglecting lower order terms (of order less than 1/8) in the
boundary layer, we have

au,‘t

§=0 &H=-77 &= (3.3
r r

Upon differentiation of the boundary layer equations
{3.23)-(3.2b} with respect to », using (3.3} and (3.2¢} and
neglecting the stretching terms, we find

déq &

— =R == 34

dt R art’ (342)

dé, @&,

ke R PR (3.4b)
diva = 0. (3.4c)

Note that the boundary-layer equations are not uniformly
valid approximations to the Navier—Stokes equations, since the
assumptions that the Aow is nearly parallel to the boady are false
near separation and stagnation points. However, our numerical
boundary is much thinner (of order V2 At/R) than the physical
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one suggested here (see Section 4) and is used merely to apply
the boundary conditions more accurately.

4. THE NUMERICAL SCHEME IN THE
BOUNDARY LAYER

The boundary layer equations were developed in the last
section for the region a << r < b, where a is the radius of the
sphere and b — a = O(R™"?). We actually use these equations
in a much thinner layer, which is of order V2 A¢/R, where At
is the time step; we shall expand upon this choice later in
this section. We describe here the numerical scheme for the
approximation of the boundary layer equations (3.4a)—(3.4c),
together with the no-leak and the no-slip boundary condi-
tions (2.3a)—(2.3b).

We time-split the Prandtl equations (3.4a)-(3.4c) to

non-viscous and viscous parts, where the non-viscous
part is
dg .
—= =10, diva=0, 4.1
i 1 (4.1}
and the viscous one is
A& Y
2= R 4.2
ot ar? (4.2

Here { denotes the non-zero components of the vorticity vector,
ie., & = (&, £;). For the non-viscous part (4.1) the particles
are evolved according to their velocities, keeping the vorticity
components as material quantities, i.e.,

dx S
E;—u, diva =0,
dé _

dr_O'

For the viscous part, Eq. (4.2} is stepped in time via a random
process that will be described later in this section.

Let us continue the description of the scheme for the inviscid
step. First, we cover the surface of the sphere by tiles, which
are formed by the spherical coordinate system. These tiles,
which have varying areas in Cartesian coordinates, form a
uniform mesh in the (f, ¢) plane. The evolution equations for
particle locations must be written in spherical coordinates;
thus

dr _ d6_1 dé_ |

Pt E:;ug, It —rsinﬂud” divu=0 4.3)
dé _
@ 0. (4.4)
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The velocity vector (u,, up, 4,) may be derived from the vortic-
ity vector by (3.3) as

wilr 0. .0 = w6, 9.0 = [T €L, 0.6,0d7, @43)

Ulr B, B, 1) = gnlBy by 1) + j TEL B D (46)

Here iy and 4, are the # and ¢ components of the velocity
vector at r = b, which corresponds to the radius at which the
thin boundary layer and the rest of the physical domain are
matched. Similarly, by integration from r 1o % we mean integra-
tion from r to b.

The radial component of the velocity, u,, is derived from u,
and u, by the incompressibility condition (3.1d). Upon requir-
ing that #, = O on the sphere (r = a), we obfain

P . . or’ Hud,
r ,=—f —— — (1, sin § dr’*f ——dr’,
" a 3in 66‘9“‘"l ) v 3in 8 d

(4.7)

where « is the radius of the sphere.

The integrals in (4.5)—(4.6) can be approximated by &),
Ar + 2 ,(&),d,f; Ar and H(Ep), Ar + 2 ,(&p),d.f; Ar, respec-
tively, where

ﬁ:l_‘d)i_qu)

19-’— 9;’1
—_, Ad

4=1""5g

are smoothing functions, and the summations are over all tiles
TiforwhichG=d,=1,0=f =1 andr; = r,. Now let Ar
tend to zero in such a way that (£,); Ar and (£5); Ar tend to
finite values (7,); and ()},, respectively. Thus, (4.5)-(4.6) can
be approximated by

(ftg); = By(r;, 0;, i 1) = g 0:, b, 1)

~¥E - 2 (R d e (4.8)
(aqé)r' = ﬁé(ri’ 9!! (rbf! f) = u&.x(ﬁh ¢Is I)
+ )T, + D, Fadif, (4.9)
1

where the summations in (4.8)-(4.9) are over all tiles T, for
which0=d,=1,0=f=1Landr,=r.
Similarly, from (4.7).

1 —a
(ar)i = &r(ris Hh (biv I) = ;__2 —z‘ue‘mCOt 9;

Ccotd, 1ln-i g -
A Ap [

ri F
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where
-t s Y —a
L= s s 0,0 - S C g,
rf—a’ (rFy—a® _ .
T2 = 3 g el 6 80020 + BT ()4
rFP-a
L=2 "5 @),d
J
and
g1 BEA2Z0) L |2 AS2 -
4 AP » Jj Ad ,

r¥ = min(r;, r;)

The sums S, 3 are over all T;, such that 0 = f; = 1, and
0=d =1, 0=d] =1, respectively. Similarly the sums
20,32 are over al) Tosuchthat 0 = d, = 1, apd 0 < f} =
1, 0 = f7 = 1, respectively. This is a thin radial layer, and
therefore the number of operations to calculate the velocity
fields for the tile method is O(N), where N is the total number
of tiles.

In order to include viscous effects in the neighborhood of
the sphere, each particle undergoes a Gaussian random walk—
a process that mimics the heat equation. The heat equation for
the vorticity vector in the Pranddl formulation is

of ¢
—_— R'I —_— = .
CeRTUIS £ (6 £
We step the solution in time by moving the centers of the tiles
with Gaussian random walks (see [16]) in the radial diree-
tion only,

P =T+ (Bt R);

here w(Az, R) is Gaussian random variable with mean zero and
variance 2 Ar/R.

The no-slip boundary condition is then approximated by
creating vorticity on the surface of the sphere (see [16]). Thus
one looks at (4.8)—{4.9) applied on r = q at certain collocation
points and add an extra term to each of the sums therein; the
extra term is associated with the vorticity which is created on
the surface of the sphere. We require that with the additional
terms—the right-hand sides of (4.8) and (4.9)— vanish at the
selected collocation points. In other words, &, and £, (or, alterna-
tively, ¥, and 74 are created such that

Tola, O, s 1) = w8, s 1) — Z {(Fohidifss {4.10a)
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To(a, B i) = ~ugul O, by ) = 2, (F),dif;. (4.10b)
- :

where the sums are taken over all jsuchthat0 = d, = 1,0 =
fi =1, and r; = a. For the convergence of the random process,
we require that the maximum strength of vorticity created on
the sphere will not exceed a prescribed amount, T As T
tends to zero, The number of tiles tends to infinity and the error
associated with the viscous term will decrease to zero (see
Section 7) with high probability, provided that Ar and A8, A¢
tend to zero (this results from numerical evidents for calcula-
tions over a flat plate and from the analysis of a simpler mode).

In a small neighborhood of poles 6 = 0, 7 one needs to
handle the singularity of the spherical coordinate system, and
it is therefore advisable to use a local Cartesian coordinate
system. We represent the vorticity and velocity vectors in
Cartesian coordinates & = (£, &, &) and u = {u, v, w),
respectively. Writing the relation § = V X u in cartesian coordi-
nates yields

dw v
gl = s
ay 9z

_du  dw

fz“a—z’a,

_dv du

53‘5;—8—;’-

Neglecting lower order terms (tangential derivatives) in the
boundary layer yields

du du
&= P 52—62, &=0.

Integration with respect to z in the boundary layer gives
o0y, o0 = vuln 0+ [T &y, 2, D de,

ulx, ¥, 2, 1) = X, Yo 1) ~ r &lx, y. o 1y dz’

Here 7 = o refers to the vertical point where the interior
domain matches the boundary layer and the horizontal veloci-
ties, respectively, #.., U refers to values of u and v for this z.
The vertical component w of the velocity vector is recovered
from the incompressibility condition,

o f du 80 ' '
wix, v, 2.0 = —L (a+d_y) {(x.,v,2', ) dz'.

In the expressions above £, & are derived from the spherical
representation of £ by the relations

& = £.sin Bcos ¢+ Eycos Bcos b — £45in ¢,
& = & sin Osin ¢ + & cos @sin d + £,c08 ¢,
& = & cos 0+ £;sin 8,

(4.11a)
(4.11b)
{@.11c)
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where we have neglected &, in the boundary layer. The numeri-
cal approximations of the formulas above are similar but simpler
than the ones in spherical coordinates and can be found in [27].
For the sake of completeness we quote them here. Let ¥, and
T, approximate £ Az and &Az, respectively, as Ar tends to
zero, thus .

i = (X, Yoo 2 1) = Ma(Xy, ¥, 1) = 3(F) = 2 (R
4

v, = 0(x;, ¥, 2y 1) = Uaulxs, yiy 1) + %('?I)i + 2 ('T'I)jdjf:u
i

where d; = 1 — {x, — x;l/hyand f; = V = |y, — y;|/h; are
smoothing functions, the summations are over all T; for which
0=d;=1,0=f =1, and z; = z;. Similarly,

=1 J,—J_
h hy

w; = VPV(X.‘,)’,‘; Ziy t) = -
where

Lo = (= aua(x = b2,y 1) = D (RYdEfiz),
Jo = (2= aWals, ¥, £ hl2,0) + D7) d fFef,
and

Ji=1- lx = A2 = x|

! hy » Si=l

2} = min(z,, ).

The sums zi,Ei are over afl 7;, such that 0 = f; = 1,
and 0 = d = 1,0 =4d; < 1, respectively. Similarly the sums
20,2 are over ail 7;, such that 0 = d, = 1, and 0 = f} =
1,0 = f; = 1, respectively;, we have chosen h, = h; = h,.

When a spherical tile leaves a prescribed thin numerical
boundary layer of order 2 At/R, it becomes a blob, whose
trajectory is described in the next section. Since we want to
assure that with high probability a tile created on the boundary
leaves the prescribed numerical boundary layer within several
{one or two) time steps, we have chosen the numerical boundary
layer to be of order V2 At/R. The Cartesian components of
the newly created vorticity blobs can be found by (4.11a)-
(4.11¢c). And vice versa, a blob which enters the numerical
boundary layer becomes a tile, where its tangential vorticity
components can be recovered from its Cartesian ones and its
radial component is set to zero.

5. THE NUMERICAL SCHEME IN THE INTERIOR

The boundary layer equations are used in & neighborhood
a = r = b of the sphere, where b — a = (V2 At/R). Away

581/115/2.2
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from the sphere, for r = b, the Navier-Stokes equations are
approximated by a three-dimensional vortex scheme [1, 16,
27]. It is possible to derive a vortex scheme for {2.1)-(2.3)
with various choices of coordinate system; however, the
Cartesian one is the simplest and the most adequate, since the
velocity—vorticity relations as well as the differential equations
and far-field conditions can be most easily represented in
Cartesian coordinates.

We invoke the vorticity formulation of the Navier—Stokes
equations, which is represented as follows. Along particle tra-
jectories

dx
- = 5.1
AL 3.1
the vorticity is evolved via
%f—: =(£-Viu+ RV (5.2)

Here didt = 8/t + u-V denotes the material derivative,

Let us represent u in terms of £ Since the flow is incompress-
ible, there exists a vector valued function ¢, called the vector
potential, such that u = V X 4. Note that ¢ is determined up
10 an additive potential field Vg, thus ¢ can be chosen such
that div %y = 0. Upon taking the curl of the relationu = V X
i, we find that, since  is divergence-free,

Vi = &

The last differential equation, together with a vanishing condi-
tion for the first-order derivatives of  at infinity, can be solved
in R? by means of the Green’s function —G(x) = 1/4xlx| for
the Laplacian operator, ie.,

WX, 1) = j Gx — XX, 1 dx',  G(x) = —1/dnix].
The velocity u can be recovered by taking the curl of i,
(5.3)

u(x, ) = jK(x — xEX, dx’,

where K(x) is the 3 X 3 matrix,

0 -z vy
|
Kxy=———1| ¢ 0 —x
) Agr? ’
-y X 0

and r = |x| = Vx?+ y? + z2 Here we have accounted only
for the condition of vanishing velocity at infinity. Note that
(5.3) holds and implies indeed a vanishing velocity at infinity
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as Jong as the vorticity has compact support, or alternatively,
if it decayes as r™* as r tends to infinity.

If we want to satisfy a non-homogeneous far-field condition
for u, we must add a potential flow Vg, ie,u= Vg + Kx £
where Vg tends to U at infinity, leaving the no-leak boundary
condition unchanged. Thus, we write

n= upurcntiaf + K* ‘bts (54)

where U, = Vg and g is the potential function that satisfies
V’¢ = 0 in the domain a < r < o, Vg tends to U as r tends
to infinity, and dg/9r = 0 on the surface of the sphere (r =
a). Here U = (U, 0, 0) represents uniform velocity in the x
direction, Solving the Laplace equation with the appropriate
boundary conditions for g vields

g = Ursin #cos {1 + a¥/2r).

In fact, one can pick g such that the no-leak boundary condition
{2.3a} is satisfied on the body by requiring that aglon =
—(K* £)-n on the body. However, since we are approaching
the sphere with the boundary layer equations, and the no-leak
boundary condition is already imposed there, we only require
that g leaves u - n unchanged.

5.1. Spatial Discretization

The singular kernel K is smoothed |16} via its convolution
with a cutoff function ¢; where § is the cutoff parameter.
Denote by K, the smoothed kernel K#* ¢y the latter is then
explicitly differentiated [1] to approximate the stretching term
(£-VYK=*£) in (5.2) by (£-VXK;*£). The viscous term
R™'V2¢ is discretized in a similar manner; the vorticity is first
convoluted with a cutoff function, and the approximaiion to
the viscous term is then obtained by the convolution of the
explicit Laplacian of the cutoff function with the vorticity, i.e.,
by V3¢, & This describes a deterministic approximation to
the viscous term that we have suggested in {28]. All convolu-
tions are then replaced by trapezoidal sums, which retain their
initial accuracy on a uniform grid by the incompressibility
condition. Since at each time level the Lagrangian mesh forms
a flow map of an originally uniform spherical mesh, the formal
accuracy of the trapezoidal rule is kept throughout the time-
evolution of the mesh. Thus, the evolution of approximate
particle locations %(#) is determined by the following system
of ordinary differential equations:

d,

’:i?) = Uewa(&AD) + 2 Kolklt) — KO0y, (5.5)
d7

arm = (7()- V) ["pm(x (0 + 2 K& - "'“”*f'(')“’]

+ R Y VIu%(1) — R()F(Da;. (5.6)

Here V and V? represent Eulerian explicit differentiation, and
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a; = a’ Af A(;b(-sin Bj)un'giuah

where its multiplication by Ar represents the volume of the
original element created on the boundary; the latter is preserved
by the incompressibility condition. Note also that

3
Uprenin = V (Ur sin @cos ¢ (1 + —29,3))
a}
= V UX 1+ ﬁ \

or in Cartesian components (u, v, w)

U( - ad(r’ — 3x%)
“polcnlial = 1
28
3
v -y 3xyu
potential — 2,5 "
¥
_ 3xza’
Wootential = 5

To saiisfy the no-leak boundary condition, for each blob
located at ® in the physical domain with centered vorticity
£ one adds an imaginary blob at § inside the ball, with
vorticity £ = — £/|%|. The imaginary point lies on the straight
line connecting % with the origin, such that [%||y] = &2 If
we look now at the equation which relates the vorticity with
the vector stream function , V% = —£ the solution ¢y =
G=§ where G(x) = —1/4n[x|, satisfies # = Oonr = g
after the addition of the set of imaginary vortices. This, in
turn, yields that (V X ¢y-m = 0, which means that
p'n=0onr=a

Equations (5.5)-(5.6) take the following form after the addi-
tion of imaginary blobs:

d%; .
th(r) = up(:lcntial(ii(f)} + z K&{ii(f) o ij(:))%;{z)aj
i
- _ (1)
- 2 K& — y,(:))m @
dT,(r)

( (I) V)l‘l]'!ulr..nlml(x (E))

T [z VK5()"K;({) - ’-‘j(f))i';(f)aj 5.7

cel

X,(N7(ta;

~ 2 VK%)= §,(1)
+ R, Vihy(Ri(1) —

- R szcm (n— y’(”)l* Er)|
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Here

d e
%VKa: 1~"-—K5+ %'V_Kﬁ‘i‘ %:T(?_Kg,
ox ay 0z

where 7 = (7%, 7%, T°) is the Cartesian representation of r.
It is desirable to cover the computational domain with blobs,
for which some may carry zero vorticity initially. However,
this will make our calculations unaffordable, and vorticity
spreading is taken care of by the generation of new computa-
tional points on the wall, their convection and redistribution
by (5.7).

5.2. Temporal Discretization

Time-derivatives appearing in (3.7) are approximated via a
second-order Strang-type scheme (see, e.g., [27]). By (5.4)

u = u(x, £, thus Egs. (5.1}-(5.2) can be written in the
form

9 - Ain). €00,

ﬁ =

o B(x(1), &(1), 1},
where

A(X, §9 t) = u(x9 t) = upntemial (X(F)! !) + (K* g)(x(r)s f)

and

B(xf gs [) = (g. V)(upﬂlemiﬁi(x(r)s r))
+ (K* ), 1) + RTVIER(), 1).
The second-order timestepping scheme that we used can be
written as follows: We define intermediate values x""'7,

£V which approximate x and £ at time .
(n + 1/2)As,

M g g %{A(x", £°,1,),
g = gy %IB(X”, &5 1)

The approximated values at time ¢t + Ar =
then

{(n + 1) Ar are

X" = X"+ AAXTT2 ETVE f ),

£l = £+ Ar B(x™"? £ L ).

Combining time with spatial discretization we find, for the
intermediate time step # + 3,
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K2 = g 4 %’ I:ummm,(i;‘) + 2 KA - R0,
4
S Kkt - 7 ]
- i Y - a; |,
- & Y; 'ij i
7R = %{(ﬁ" V(K1)
+ 71 [2 VK (X1 — X))7a; (5.8)
4

- S VK =8 ]

+RTY Vigs(R) — %)7)a;
j

- R z V qbﬁ(xr - Y;I l J}
And for the next time step, f,;,, we have

irjﬁ—l =%+ At [upnlcmnal(ime) + E Ks(xu+h'2 _ xu+|l"),ru+|.' a,
i

,~r{;+lﬂ'2
- gntli2 o gatli2 J
ZKS(XT yf )‘i“+”1‘a}‘ .
1 i)
?:'I-H = T( + A[ {(TH‘HQ V)upulenrm](x'ﬁ“’)

+ %:14-],'2_ [2 VK (xn-HL — xn+|t’2]1.n+1.‘2a; (5.9

;I.FHH

— +12 12

z VKg(xn yfﬂ ) }inﬂ.[l] a-"
4

+ R E V2ghs(R01? — i}’*”g)’r":”"'zaj
i
2nt1/2
n+l!‘1) _T —
l“'u+l.’2[ f

There is a large variety of cutoff functions ¢(x) that can be
chosen. Since we must differentiate the cutoff function twice
(see (5.8)—(5.9)), we have chosen a smooth (actually infinitely
smooth) cutoff function. We have picked a fourth-order cutoff
function (d = 4), which was suggested by Beale and Majda
[12], ie.,

+ R EV ¢(xn+m

=2 (e 1),

where » = |x|. This ensures a regularization error (the error
between the exact vorticity and its convolution with the cutofi
function above) of order 8% and error of the same order for
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the three-dimensional Euler’s equations. Since ¢ is a radially
symmetric function, the smoothed kernel K can be written in
terms of K as

Ks(x) = (1 — 2¢77% + ") K(x).

The cutoff function may be differentiated twice to obtain

(-2
)

0 (see [28]). The

Vigh(x) =

and it can be readily verified that d{s) =
stretching term takes the form

dF, _
1= 2 HANK, -
!

dr X)) + TBHX, —

X7
+ FOKAK; — %;)7,(D]a;,
where

a; = a’ A6 A‘i’ (sin Qj)on'gina!s

%, = (71, 7, 79), and

mm=§mm,mm=imm,@®:imm.
X ay dz

Or more explicidly,

. _ _ _ 2_3 2 3 , 3

i (F2 (2 4 (35)
X%

» . 3 o fpd 3 2 3 -

FIBAX)T; = T G5 ( :f) Gza( (r4m,5 X )), Gi; (4;:5))
x 'rj

. _ 3 3 (2 = 3 2

FCs(x)T, = (Hhs (4;:) s (ﬁ) Hy (‘%))

X ?}l

Here Fi;. G5, Hsfor i = 1, 2, 3 indicate smoothing operators
on the corresponding functions. For example,
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.—_(_rz_;?f_). :-L 1.2
FM( 4qr? 4xr’ (rf =39

and

3xy Jxy e ( r3)
2 ) = =2 — r + =
i (4?71"-") 47’ l:(] 2e ! &’
r3
=)

Other smoothing functions can be similarly derived; ie.,
smaoathing of terms which include +* — 3y? and #* — 3z° are
similar to the one for r* — 3x%, and smoothing for terms which
include 3xz and 3yz are similar to the one for 3xy.

+ e—r3f2d‘] (l 4

| —

6. BOUNDARY CONDITIONS

The boundary conditions that should be supplied to the differ-
ential equations arise from the boundaries of the physical do-
main r = a and from the artificial boundary at r = b. In fact,
we are solving two systems of differential equations; one in
the domain r = b, and the second in @ < r =< b. For the first
region r = b we impose

(a) the far field boundary condition u — U at r — o, this
is satisfied by the addition of a potential flow field (see (5.4));

{b) the continuity conditions for ug,, u, and &, £, at r = b;
these conditions will be expanded upon later in this section.

In the second region a = r = b we apply

(a) the no-slip boundary condition uy = uy = Gonr = a
by vorticity creation (see (4.10a)—(4.10b));

{b) the no-leak boundary condition &, = Q by creating imagi-
nary blobs (see (5.7)) and by constructing u, from wu, and iy
via the incompressibility condition (see (4.7));

(c) boundary conditions on iy and u 4 at ¥ = b by prescribing
their values subjected to the interior flow (see (4.8)-(4.9) and
[271); and

(d) smooth transition of the tangential components of the
vorticity vector on r = b, this process is described below.

The transition between the two regions is done as follows:
A tile that crosses r = b becomes a blob, which shares the
same vorticity with the corresponding tile; ie., &, &, and
&, = 0 are transformed continuously, while its Cartesian repre-
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FIG. 1. Discrefized |} versus discrerized [[£],.

sentation of £ is given by (4.11a)~(4.11c). Similarly, if a blob
passes the border r = b, it becomes a tile, which has zero radial
component, and its tangential components are expressed via
the inverse of the transformation (4.11a)—(4.11c).

7. ON THE CONVERGENCE OF THE SCHEME

Several theorems have been proved on the convergence of
vortex schemes to two- or three-dimensional Euler’s equations
(see, forexample, [32, 10, 11, 46, 22, 8]). Beale [8] has bounded
the errors in a three-dimensional vortex scheme with grid-free
stretching (the sume scheme presented here but without viscous
terms). Assuming that the velocity field is smooth for 0 =1 =
T and the initial vorticity field & is compactly supported, he
showed that if one picks a cutoff function of order 4 = 4 and
a cutoff parameter & = ¢yh? for fixed ¢, and § < g < I, then
forO0=t=T,1<p< o,

TABLE 1
Time 1€l li€lR maxju]  max|d  No. (iles, blobs)
(.38 1.90* 10° 8.65% (! 3.623 0.7851 (904.0)
0.62 332108 1.52* 1% 5.071 0.7865 {1543.52)
.89 6.87+10° 353100 10231 12.349 (2857,472)
[.04 136 1OF TR 1 [1.406 20.512 (5605,832)
1.15 224 % 1 1.18* 10¢ 13.988 26.916 (9297.1178)
1.2 26210 141 =10 14.853 30372 {10745,1552)
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TABLE 1I
Time i, Jl]; £, No. (tiles, blobs)
078 198+ 1¢¢ 457 1F 146464 = 10 (1671.281)
1.57 7.38 % 1P 6.50 %0 t.46968 * 1(F (2300,1976)
1.82 143 1 1.09 « 18 146482 « [0 (6269,3691)
222 2.86* 10° 2.64% 10 147033 % 1K {8874.10376)
24 399 ¥ 382108 146962« 10} (12045,14858)

&) = xitMlops = €87 [|E00) — £, = C8

Here the norms |- {lys, ||-]l-1, are the discrete LA(R?) and
W (R?) norms, respectively.

Concerning viscous effects, convergence of a deterministic
vartex scheme to the convection-diffusion equation dgfar +
{a(x, 1) - V}& = R7'A%{ has been established [24, 29]. We have
the following.

TueoreM [29].  Ler ¢ € WP R m = d + 2, be a cutoff
Sunction of order d with non-negative Fourier transform, i.e.,
PH(s) = J-R; dxX)e ™ dx = 0. Assume thar a(x, 1) and the
transformation from a to x via the flow map has continuous
and wiformly bounded derivatives to order m + 3 and that
£€ W(RY), m = d + 2. Define the approximate solution
&) as

g{# =a(x;, 1), diva=0,
d~r & 2
%(2 =R E A (xi(1) ~ x,(INE,(NR?
Ly
2

FIG. 2. Vorticity field projected on (x, o) plane ¥ = 0 at 7 = (.38,
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FIG. 3. Vorticity field projected on (x, 2) plane y = 0 at ¢ = 1.04.

where X(0) are uniformly distributed points in R? with mesh-
spacing h, and E(0) = Hx0), 0). Then

. hm
€ = &lloss = COR™ (5d + 8m+2)’

swhere C(f) depends on t and on the W**-Sobolev norms || &2,
0=k =m+ 3, at the initial rime 1 = 0. Convergence can
be extended to the three-dimensional problem d&/5t + (a(x,

/’ﬁ’ﬁ;ﬁ:i;\, & “%\:?t‘\\*‘\\
i/

i i I
P e,

Wt by,

Y -

FIG. 4. Vonicity field at r = 0.38.

DALIA FISHELOV

FIG. 5. Voricity field at 1 = 1.04.

1y-VYE = (& Vialx, 1) + R7'VEE with similar bounds on the
error assuming that a and Va are smooth enough.

Goodman [30] and Long [35] have proved the convergence of
arandom-vortex scheme to the two-dimensional Navier—Stokes
equations. A convergence proof for the scheme in the boundary
layer is not available yet; however, a numerical study of the
vortex sheet method for the Prandtl equations [45] indicates
that the error between the approximated steady solution and
the Blasius solution is of order (& + &, )VAHR, where h is
the initial spacing in the streamwise direction and £, is the

T \'\_,._—r-"‘ —_—
e - -
—— -'“—-.. e e il

- e B e
N —-

— T -

— __"'—‘-_. e s
T —— ——r
_— —

—_——— —_—— PUR-

FIG. 6. Velocity field projected on (x. 2) plane ¥y = 0 at r = 0.38,
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FIG.9. Streamwise vorticity contours projected on (x, 2) plane at7 = 1.04,
FIG. 7. Velocity field projected on (x, 2) plane ¥ = Oat7 = |.04.

maximal vorticity of newly created sheets. A one-dimensional ~ very small scales of vorticity as well as velocity. Similar results,
analysis for the heat equations with vorticity-creation [31] pro-  although more profound. can be found for higher Reynolds
vides the estimate P([i ~ ull/|ul: = Cx(At/t + k/\VAy) = numbers. We have tried several spatial and temporal meshes,
I — 17k where N in the number of tiles, k is an arbitrary ~and the one for which we represent the results was fine enough

positive number, and P denotes probability. to capture the vorticity growth in the discretized L, and L,
norms and coarse enough to make our computations affordable

8. RESULTS for at least a time interval of order one. In Fig. 1 computed

values for (|[]l... |, for the same spatial mesh A8 = A =

We present results for a flow over a sphere of radius 1 #/4 and different temporal meshes: max/u| Ar = C A# with

{¢ = 1} and Reynolds number 3000. This number was found € = 0.2, 0.1, 0.075, 0.03, respectively, are displayed. Tt is
to be high enough to exhibit turbulence phenomena, such as
growth in the vorticity L, and L, norms and the creation of

®¥—-Vorticity
Y-=Vortliclty

—— Plot 1

Plot 1

FIG. 8. Streamwise vorticity contours projected on (x, 2) plane at = 0.38. FIG. 10, Spanwise vorticily contours projected on (x, z) plane at ¥ = (.38.
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F1G. 11, Spanwise vorticity centours projected on (x, z) plane at 7 = 1.04.

observed that for the first 60 iterations the graph for C = 0.1
does not differ a lot from the ones for € = 0.075 and C =
0.05, but it does differ from the one for C = 0.2; therefore we
picked C = 0.1.

Choosing the spacing in # and ¢ to be A# = 7/4 and
Ad = 2m/8, respectively, means that the no-slip boundary
condition is approximately satisfied on the mesh points above,
by the creation of tiles whose maximum intensity does not
exceed a prescribed value 1,,,. We have picked 7, the maxi-
mum strength of vorticity created on the boundary o be
Toax = 0.5% A6 (see (16, 27]). With these parameters we could
carry ouf our computations for a reasonable period of time

Z-vortlclty

Plot 1

FIG. 12. Z-vorticity contours projected on (x, z) plane at ¢+ = 0.38.
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205

Z=Vartlelty

Plet 1

FIG. 13. Z-vorticity contours projected on (x, 2} plane at ¢ = 1.04.

FIG. 14.
27 {125 for the two highest time-levels) (black) at ¢+ = 0.60, 0.77, 1.04, 1.20,
1.82, 2.4), going from left 10 right. top to bottom.

Isosurfaces of vorticity-strength at levels 12.5 (light gray) and
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FIG. 15.
(light gray) at + = 0.60, 077, 1.04. 1.20, 1.82, 2.41.

Isosurfaces of spanwise vorticity at levels 4 (dark gray) and —4

{up to ¢ = 1.2}, without exhausting the computing resources.
Further refinement of the spatial mesh will cause a considerable
growth in computing power that is needed for advancing the
solution to ¢ = Q(1). The scheme is numerically stable for this
period of time and interesting physical phenomena have been
observed. The enstrophy——the integral of ¢- £ over the whole
space-—is, generally speaking, growing constantly as time pro-
gresses; this phenomenon was also observed in [17]. In Table
I we show the growth of the discretized L, and L, norms of
the vorticity as time evolves. We also show the evolution of
max/u| and max|7| and indicate the numbers of tiles and blobs
as a function of time. Thus constan( growth in the infinity
norms of u and ¢ is observed, and this may lead to a non-
smooth velocity field as R tends to infinity in case the vorticity-
sirength blows up (see [9]).

In Table IT we show flow quantities for a longer-time simula-
tion, this time with 7,, = 0.025 * Afand Ar = C{t)* A8, where
C(1) is decreasing from 0.1 10 0.025 as the time evolves. Further
progress in time can be made as soon as a fas{ summation
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method is applied to reduce the cost of the velocity field
computation. In Table I we show the evolution of the kinetic
energy E, defined on a bounded domain B, = {x|
a = |x| = Ry} as a function of time; one can observe that it
fluctuates about the same value. Looking at the rate of change
of the kinetic energy defined on the bounded domain B,, with
boundary dB,, we find that

1

2 Jan,

+ La‘, {fYuu) -ndS—R! jBn {7l dx,

(w-uXu- - n)ds+ LH p(u-n)dS

where [Vu? = (Vuy? + |Vu? + |Vw{®. The contributions of the
boundary integral from the sphere r = g are zero since all compo-
nents of the velocity field vanish there. If R, is large, then u is
nearly the potential velocity on r = Ry; thus v nis nearly U{x/
ry(1 — a'/r’), which is antisymmetric with respect to x. Thus the
first integral on r = R, vanishes for the potential flow field, and

FI1G. 16.  Contours of vorticity-strength on the plane y = 0.09 {(dark gray
represents intense vortictty) a1 f = 0.60, 0.77, 1.04, 1.20, 1.32, 2.41.
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FIG. 17. Contours of vorticity-strength on the plane z = —0.2 (dark gray
represents intense vorticity) at ¢ = 0.60, 077, 1.04. 1.20. 1.82, 2.41.

the same is true for the second integral, since p is symmetric with
respect to x. As for the third integral, it is easy to see that it decays
as O(Ry?) for the potential flow-field. In the numerical simulation
one can observe small fluctuations of the kinetic energy about its
mean value; this is probably caused by numerical errors and due
to the contributions of our finite domain.

In Figs. 2 and 3 we represent the vorticity held projected on
the x, 7 plane at early (r = 0.388) and more developed stages
(f = 1.04) of the flow, respectively. We observe that while in
the beginning the vorticity vector was tangential to the sphere,
it is later oriented in various directions and it grows in magni-
tude in several regions of the flow. Figures 4 and 5 display the
vorticity field in the whole space at + = 0.388 and + = 1.04,
respectively. In Figs. 6 and 7 we dispiay the projection of the
velocity field at the same time stages as in Figs. 2 and 3,
respectively. For the more developed stage, uniform magnitudes
but varying directions of the velocity field are represented.
Since the vorticity field is represented by a linear combination
of velocity gradients, it is plausible to expect that in certain
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regions the magnifude of the velocity gradients grows in time;
this phenomena is observed in Fig. 5. Moreover, the velocity
field deviates a lot from the potential field that corresponds to
the flow over the sphere. In Figs. 8 and 9 we show streamwise
vorticity contours in the x, z plane for + = 0.388 and ¢ = 1.04,
respectively. Similarly, Figs. 10 and 11 represent spanwise
vorticity contours, and Figs. 12 and 13 represent contours of
the z-component of the vorticity vector. One notes that as time
evolves the vorticity is concentrated in more restricted portions
of the physical domain and this suggests that the Hausdorff
dimension of the support of the vorticity is less than three.
Figures 14—17 represent vorticity isosurfaces and contours
at + = 0,60, 0.77, 1.04, 1.20, 1.82, and 2.41; for the last two
time levels the parameters were chosen as for Table II. Figure
14 displays isosurfaces of vorticity strength at levels 2.5 (light
gray) and 27 (black) for different time levels, where for the
last two time levels the isosurface levels are 12.5 and 125
(instead of 27). The flow is coming from the left towards the
viewer on the right. One can note how the vorticity-strength
is spreading out over the sphere and then away from it as time

FIG. 18. Velocity field on the planes x = —04, 0., 04, 08, 1.2 at ¢ =
1.04: the order 1s from left to right and top to hottom.
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develops. In Fig. 15 spanwise-vorticity isosurfaces at levels 4
{dark gray)} and —4 (light gray} are displayed; note that some
antisymmetry is retained in the initial stages, but is broken later
in time, since the numerical processes (especially the stochastic
ones} introduce antisymmetric disturbances that grow in the
course of the time evolution,

In Fig. 16 1 have plotted vorticity-strength contours on the
plane y = 0.09; dark areas represent intense vorticity. It is seen
that two main vortices, which cause circulation of the fluid, are
formed in the rear of the sphere. This figure shows a similarity to
known numerical and physical results for the flow over a cylin-
der at high Reynolds numbers (see, for example, [15]) and it
makes us more confident that the numerical results are giving
a physicaily realistic simulation. Similarly, Fig. 17 displays
vorticity-strength contours at z = — (.2 at different time levels.
Note the formation of a variety of vortices near the surface of
the sphere and the way they become more intense in the rear
of the sphere as time progresses.

Figures 18-20 display the velocity field on selected planes
for + = 1.04. Figure 18 contains the planes x = —0.8, —0.4,

FIG. 19. Velocity field on the planes y = =04, 0., 04, 0.8, 1.2 a1t =
1.04; the order is from left to right and top to bottom.
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FIG. 20. Velocity field on the planes z = —04, 0,04, 0.8, 1.2 a1 ¢ =
1.04: the order is from left 10 right and top to bottom,

0., 0.4, 0.8, and 1.2. Note that away from the sphere, at x =
1.2, for example, the flow becomes more regular and is domi-
nated by the far-field conditions. At x = —0.4, 0., 0.4 there
are disturbances which are due to vorticity-creation on the
sphere. Similar such graphics were presented in the paper of
Bernard ef al. [13] for vertex identification. For Fig. 19 the
selected planes are y = —0.8, —0.4, 0., 0.4, 0.8, and 1.2;
circulation of the fluid on y-planes represents spanwise-vorticity
formation. Figure 20 displays the velocity-fieid on the z-planes
2= —04,0, 04, 0.8, 1.2; irregular flow, which is cavsed by
vorticity concentration, is taking place for some of these planes.
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